dyadic coordinates - definitie. Wat is dyadic coordinates
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is dyadic coordinates - definitie

RATIONAL NUMBER WHOSE DENOMINATOR IS A POWER OF TWO
Dyadic solenoid; Dyadic fraction; Dyadic rational number; Dyadic rationals; Dyadic numbers
  • Real numbers with no unusually-accurate dyadic rational approximations. The red circles surround numbers that are approximated within error <math>\tfrac16/2^i</math> by <math>n/2^i</math>. For numbers in the fractal [[Cantor set]] outside the circles, all dyadic rational approximations have larger errors.
  • alt=Unit interval subdivided into 1/128ths
  • Dyadic rational approximations to the [[square root of 2]] (<math>\sqrt{2}\approx 1.4142</math>), found by rounding to the nearest smaller integer multiple of <math>1/2^i</math> for <math>i=0,1,2,\dots</math> The height of the pink region above each approximation is its error.

Homogeneous coordinates         
MATHEMATICS
Homogenous coordinates; Homogeneous coordinate; Homogeneous co-ordinates; Homogeneous coordinate system; Projective coordinates; Homogeneous Coordinates; Homogenous coordinate
In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work ,August Ferdinand Möbius: Der barycentrische Calcul, Verlag von Johann Ambrosius Barth, Leipzig, 1827.
Lemaître coordinates         
PARTICULAR SET OF COORDINATES FOR THE SCHWARZSCHILD METRIC
Lemaitre coordinates; Lemaitre metric; Lemaître Coordinates; Lemaître metric
Lemaître coordinates are a particular set of coordinates for the Schwarzschild metric—a spherically symmetric solution to the Einstein field equations in vacuum—introduced by Georges Lemaître in 1932. English translation: See also:  … Changing from Schwarzschild to Lemaître coordinates removes the coordinate singularity at the Schwarzschild radius.
6-sphere coordinates         
3D COORDINATE SYSTEM CREATED BY INVERTING THE CARTESIAN COORDINATES ACROSS THE UNIT SPHERE
6-Sphere Coordinates; Six-sphere coordinates; Six-Sphere Coordinates
In mathematics, 6-sphere coordinates are a coordinate system for three-dimensional space obtained by inverting the 3D Cartesian coordinates across the unit 2-sphere x^2+y^2+z^2=1. They are so named because the loci where one coordinate is constant form spheres tangent to the origin from one of six sides (depending on which coordinate is held constant and whether its value is positive or negative).

Wikipedia

Dyadic rational

In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.

The sum, difference, or product of any two dyadic rational numbers is another dyadic rational number, given by a simple formula. However, division of one dyadic rational number by another does not always produce a dyadic rational result. Mathematically, this means that the dyadic rational numbers form a ring, lying between the ring of integers and the field of rational numbers. This ring may be denoted Z [ 1 2 ] {\displaystyle \mathbb {Z} [{\tfrac {1}{2}}]} .

In advanced mathematics, the dyadic rational numbers are central to the constructions of the dyadic solenoid, Minkowski's question-mark function, Daubechies wavelets, Thompson's group, Prüfer 2-group, surreal numbers, and fusible numbers. These numbers are order-isomorphic to the rational numbers; they form a subsystem of the 2-adic numbers as well as of the reals, and can represent the fractional parts of 2-adic numbers. Functions from natural numbers to dyadic rationals have been used to formalize mathematical analysis in reverse mathematics.